Three-dimensional collagen matrices induce delayed but sustained activation of gelatinase A in human endothelial cells via MT1-MMP.

نویسندگان

  • M Nguyen
  • J Arkell
  • C J Jackson
چکیده

Gelatinase A, a member of the matrix metalloproteinase (MMP) family, plays an important role during angiogenesis. It is constitutively expressed by human endothelial cells as a latent enzyme and requires activation. Thrombin is the only described physiological inducer of gelatinase A in human endothelial cells. In this study, we investigated the mechanisms of gelatinase A activation by another physiological inducer, collagen. Endothelial cells were cultured on various ECM components for 24 h and the conditioned media were assessed for gelatinase A activity using gelatin zymography. The results demonstrated that type I collagen matrix specifically activates gelatinase A after 24 h in human umbilical vein and 48 h in neonatal foreskin endothelial cells. In contrast, thrombin activated gelatinase A after only 2 h. Activation by collagen was sustained over long periods of time in culture (96 h). Unlike thrombin-induced activation, collagen required active membrane type 1-MMP (MT1-MMP) on the endothelial cell surface to activate gelatinase A. In addition, collagen-induced activation of gelatinase A was inhibited by antibodies to the integrin receptor, alpha(2)beta(1), but not alpha(3)beta(1). Our findings, that collagen can provide long-term activation of gelatinase A are likely to be relevant to endothelial cell invasion during angiogenesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MAPK signaling regulates endothelial cell assembly into networks and expression of MT1-MMP and MMP-2.

Microvascular endothelial cells embedded within three-dimensional (3D) type I collagen matrixes assemble into cellular networks, a process that requires the upregulation of membrane type 1 (MT1) matrix metalloproteinase (MMP) and MMP-2. The purpose of this study was to identify the signaling pathways responsible for the transcriptional activation of MT1-MMP and MMP-2 in endothelial cells in 3D ...

متن کامل

Epidermal growth factor receptor-mediated membrane type 1 matrix metalloproteinase endocytosis regulates the transition between invasive versus expansive growth of ovarian carcinoma cells in three-dimensional collagen.

The epidermal growth factor receptor (EGFR) is overexpressed in ovarian carcinomas and promotes cellular responses that contribute to ovarian cancer pathobiology. In addition to modulation of mitogenic and motogenic behavior, emerging data identify EGFR activation as a novel mechanism for rapid modification of the cell surface proteome. The transmembrane collagenase membrane type 1 matrix metal...

متن کامل

Endothelial lumen signaling complexes control 3D matrix-specific tubulogenesis through interdependent Cdc42- and MT1-MMP-mediated events.

Here, we define an endothelial cell (EC) lumen signaling complex involving Cdc42, Par6b, Par3, junction adhesion molecule (Jam)-B and Jam-C, membrane type 1-matrix metalloproteinase (MT1-MMP), and integrin alpha(2)beta(1), which coassociate to control human EC tubulogenesis in 3D collagen matrices. Blockade of both Jam-B and Jam-C using antibodies, siRNA, or dominant-negative mutants completely...

متن کامل

VASCULAR BIOLOGY Endothelial lumen signaling complexes control 3D matrix–specific tubulogenesis through interdependent Cdc42- and MT1-MMP–mediated events

Here, we define an endothelial cell (EC) lumen signaling complex involving Cdc42, Par6b, Par3, junction adhesion molecule (Jam)–B and Jam-C, membrane type 1–matrix metalloproteinase (MT1-MMP), and integrin 2 1, which coassociate to control human EC tubulogenesis in 3D collagen matrices. Blockade of both Jam-B and Jam-C using antibodies, siRNA, or dominant-negative mutants completely interferes ...

متن کامل

Activated protein C directly activates human endothelial gelatinase A.

Angiogenesis (formation of new blood vessels) occurs in a number of diseases such as cancer and arthritis. The matrix metalloproteinase (MMP), gelatinase A, is secreted by endothelial cells and plays a vital role during angiogenesis. It is secreted as a latent enzyme and requires extracellular activation. We investigated whether activated protein C (APC), a pivotal molecule involved in the body...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The international journal of biochemistry & cell biology

دوره 32 6  شماره 

صفحات  -

تاریخ انتشار 2000